
Migrating Applications
from MPUs to MCUs

Verolt Engineering & The Qt Company Porting a Qt Quick application to Qt for MCUs 2

Contents
HomeChef Eco-System: Qt Quick Unified Architecture . 3
Development Challenges for Multi-Deployment Scenarios . 3
Proving the Qt Technology . 3
Our experience with Design Studio and WebAssembly
in the making of the HomeChef . 4

Extending to Qt UltraLite . 5
Why did we want to develop HMIs on the MCU? . 5
HomeChef Top-Down approach . 5
Gap Analysis (what was not available on Qt for MCUs) . 5
Challenges migrating to Qt Quick UltraLite (QUL) . 8

Overall Effort and Timing . 9
Conclusion/Learnings . 12

Verolt Engineering & The Qt Company Porting a Qt Quick application to Qt for MCUs 3

We believe approaches
such as the Unified
Architecture Method
(UAM) support product
delivery across
platforms by taking
advantage of discrete
user interfaces (UIs) and
reusable components
in cross-platform
environments.

HomeChef Eco-System:
Qt Quick Unified Architecture
Development Challenges for Multi-Deployment Scenarios
When your users want to enjoy their favourite software on multiple devices, they
expect a consistent experience across the board. At the same time, your challenge
to create a cohesive, unified product architecture increases, the more platforms
you port your software to. Additionally, there is a shift towards incremental and
iterative development processes that adds additional fragmentation to product
creation.

In this fragmented context of product delivery, integration has become a key
concern. To address this concern, we believe approaches such as the Unified
Architecture Method (UAM) support product delivery across platforms by taking
advantage of discrete user interfaces (UIs) and reusable components in cross-
platform environments.

With increasing technical requirements, solutions that cater to new, innovative
home equipment design become more complex and expensive. While easy-to-
use MCUs underperform in these new sophisticated implementations, high-end
industrial Microprocessing units (MPUs) come with higher hardware and software
complexity, which can lead to high follow-on costs.

Proving the Qt Technology
To outline how to address all these challenges with Qt, we created a consumer
electronics demo, “HomeChef”, as a real-life use case of multiple deployments as
one ecosystem. The idea was that optimizing cooking (faster, cheaper, less waste,
healthier) will be a key aspect of future sustainability. HomeChef keeps people
updated with what they have in their kitchen and what they need to buy in the
supermarket. We believe comparable scenarios will apply to other industries and
use cases. HomeChef comes with three different applications and devices:

A desktop deployment to prepare your dishes of the week: Choose recipes from
recipe books, favourites, or automatic recommendations, and add the ingredients
to a shopping list. HomeChef can also collect nutritional information and show you
statistics of how healthy you live. Instead of creating a native desktop application,
we decided to deploy this desktop application to WebAssembly so that users can
run this application without any installation, which makes HomeChef a showcase
of Software-as-a-service (SaaS) made with Qt.

The second deployment was the mobile app, which has the same functionality as
the desktop version but optimized to smaller form factors and made as a native
App for iOS and Android.

Last but not least, we created an embedded cooking machine that gives step-by-
step cooking instructions as you prepare your meals. We utilized a Garz&Fricke
Santaro, a i.MX6Dual-based human-machine interface (HMI) panel running
Embedded Linux with Yocto as its build system. Finally, as technology highlights,
we added both WebGL streaming for remote viewing of a camera output and
WebEngine integration for viewing Youtube streams.

Verolt Engineering & The Qt Company Porting a Qt Quick application to Qt for MCUs 4

All the deployments communicate via an MQTT1 broker in the cloud (or running
locally for demonstration purposes).

Our experience with Design Studio and WebAssembly in the making of the
HomeChef
We used Qt Design studio2 for the first time, and after initial training, it was easy to
adopt in our development process. In the beginning, we used Qt Design Studio for
prototyping design ideas, but soon it became an essential development tool.

1	 MQTT is a machine-to-machine (M2M) protocol utilizing the publish-and-subscribe paradigm.
Its purpose is to provide a channel with minimal communication overhead.

2	 Qt Design Studio is a UI design and development environment for creating animated UIs and
previewing them on the desktop or on Android and embedded Linux devices.

web server
Common Tool Chain Generated Assets

Common Assets / Libs, e.g.

Spesific Assets / Libs, e.g.

UI / Use-Cases flavors Deployments Communication

Photoshop

Design Studio

Qt Creator

Desktop / Tablet

Mobile

Embedded

WebAssembly /
Desktop

iOS / Android

Linux

Mqtt Broker

Images, QML
Components

Mqtt

WebEngine,
WebGL

Figure 1: Unified Qt Quick Architecture

https://doc.qt.io/QtMQTT/index.html
https://www.qt.io/design

Verolt Engineering & The Qt Company Porting a Qt Quick application to Qt for MCUs 5

Extending to Qt UltraLite
Why did we want to develop HMIs on the MCU?
As an embedded HMI development company, Verolt was always interested in
developing applications on embedded platforms like NXP and others. However,
these applications almost always required Linux-based processors with GPUs and
other hardware support.

We have always considered adding MCU-based HMI products to our portfolio.
However, the vendor landscape so far has been quite scattered with incomplete
offerings. When The Qt Company announced Qt for MCUs, a graphics framework
and toolkit optimized for MCUs, it was an obvious choice for us to invest into this
technology.

We will continue with an outline of our approach, the analysis we carried out for
developing the HMI on Qt for MCUs, the gaps we identified, and the steps we took
to overcome these gaps.

HomeChef Top-Down approach
Since the HomeChef application design and development on Linux were nearly
complete, we decided on a top-down development approach for HomeChef on
MCUs.

Divide and Conquer: The advantage of the unified architecture is that it lets you
effortlessly break up a project into smaller, more manageable pieces.
We analysed HomeChef’s features and their compatibility with MCUs, had
brainstorming meetings on feasibility, and regular live-coding sessions with
validation. This helped the team overcome the unknowns and achieve the feature
completion goal with minimal design changes.

Thanks to this top-down approach, we could
•	 Focus on the features most relevant to the customer
•	 Test each feature as soon as we finished it. Integration tests and user

tests frequently happened frequently throughout the project, which
made the outcome more predictable

•	 Send continuous builds regularly to the customer with every newly-
implemented feature

The advantage of
the unified architecture
is that it lets you
effortlessly break up
a project into smaller,
more manageable
pieces.

Verolt Engineering & The Qt Company Porting a Qt Quick application to Qt for MCUs 6

Gap Analysis (what was not available on Qt for MCUs)
A microprocessor typically runs an operating system that allows multiprocessing
and multithreading. The fact that microcontrollers do not run such an operating
system would impact the application design. The table below shows a feature
comparison between Qt for Embedded Linux and Qt for MCUs.

Developers need to be aware that Qt for MCUs does not support the Qt C++
modules. It does, however, let you use pre-existing code.

web server
Common Tool Chain Generated Assets

Common Assets / Libs, e.g.

Spesific Assets / Libs, e.g.

UI / Use-Cases flavors Deployments Communication

Photoshop

Design Studio

Qt Creator

Desktop / Tablet

Mobile

Embedded

WebAssembly /
Desktop

iOS / Android

Linux

Mqtt Broker

Images, QML
Components

Mqtt

WebEngine,
WebGL

Derived
Deployments

MCU

Figure 2: Deployment of HomeChef on an MCU

Qt modules on Embedded Linux Availability Qt for MCU

Qt Network Not available

Qt Quick Dialogs Not available

Qt Quick Controls With limitations

Qt Quick Layouts Not available

Other modules (e.g. Qt MQTT,
Qt Serialport etc.)

Not available

https://doc.qt.io/qt-5/qtnetwork-index.html
https://doc.qt.io/qt-5/qtquickdialogs-index.html
https://doc.qt.io/qt-5/qtquickcontrols-index.html
https://doc.qt.io/qt-5/qtquicklayouts-index.html
https://doc.qt.io/QtMQTT/index.html
https://doc.qt.io/qt-5/qserialport.html

Verolt Engineering & The Qt Company Porting a Qt Quick application to Qt for MCUs 7

We decided to port the frontend, as the backend required more effort to integrate
the MQTT and WIFI modules.

Qt for MCUs provides a subset of Qt Quick known as Qt Quick UltraLite3 (QUL),
which addresses the resource constraints in MCUs. The trade-off to the QUL’s
lower footprint comes in the shape of limited capabilities, compared to Qt Quick.
To achieve the expected result, we had to simplify certain QML4 design elements.
Below are some of the learnings during this development phase.

Design Studio
We developed the frontend with the help of Design Studio. Because there was no
support for QUL at the time of development, some components that were
dependent on Design Studio components and Qt Quick required rework.

3	 Graphics runtime optimised for high performance and low memory consumption on resource-
constrained devices.

4	 The Qt Modeling Language is a declarative Markup language for designing UI–centric
applications.

Design Studio component Reworked for Qt for MCU Reason for rework

Circular progress bar QML needed to be updated with
timer-based instead of timeline-
based animations

Design studio component
Timeline is not available for
Qt for MCUs

Charts Completely redesigned the
component in QML

QChart module is not part
of Qt for MCUs

Cooking Steps Minor modification QML type support was not
available

The HomeChef app
running on an MCU.

https://doc.qt.io/qt-5/qml-qtquick-timeline-timeline.html
https://doc.qt.io/qt-5/qchart.html

Verolt Engineering & The Qt Company Porting a Qt Quick application to Qt for MCUs 8

Challenges migrating to Qt Quick UltraLite (QUL)
During the migration, we came across differences between QUL and Qt Quick.
Here is a list of elements we needed to rework for HomeChef.

Qt Quick QUL 1.0 Limitation Workaround

QTimer Available with
limitations

Function Triggeronstart
not available

Call explicitly start

Rectangle border Not available Overlapping Rectangle to
show border

List View Available with
limitations

Horizontal scrolling not
available.

Flickable property for
horizontal scrolling.

Text Input Not available Custom type

Text Edit Not available - Custom type

Property Animation Available with
limitations

Property animation to
anchors is not available

Timer and Transform
properties to Rotate the
object.
Prebake animation in
photoshop

Java script functions Not available

Popup Not available Custom type with high
Z-order

Font Available with
limitations

Font. Weight increases
the memory footprint
significantly.
Font. Pixel size should
be a fixed value

Dynamic resizing of font
should be avoided.

Loader Not available Used visibility property
for page loading

Scroll View Not available Flickable property for
vertical scrolling

Drawer Not available Custom type with
animation and visibility

Stack view Not available Custom type with visibility
flag

Model
Available with
limitations

Cannot declare in
another file

Model and delegate
should be declared in
same file

Combobox Not available
Custom types

Application
window

Not available No possible alternative,
but planned for future
version

ItemDelegate Not available No possible alternative,
but planned for future
version

Page Not available
No possible alternative,
but planned for future
version

Verolt Engineering & The Qt Company Porting a Qt Quick application to Qt for MCUs 9

QUL Performance and MCU limitations
Individual animations were showing signs of performance degradation. To overcome
this performance issue, we conducted several trials and finalised the solution by
reducing computation and using a single timer for multiple micro-animations.

One such use case, a circular progress bar depicting the progress of kneading, was
developed with design studio elements. In this particular case, we used a design
studio element “Arc,” which was animated by “Timeline,” another Qt Design studio
element. Since these elements were part of Qt Design Studio, we had to redesign
the circular progress bar.

•	 The animation of the progress bar required more memory and power,
so we had to take a timer-based rotation approach. We found that this
approach significantly reduced the memory footprint and provided a
smooth animation.

•	 At the end we ended up having an total application size of 480kB and
being able to provide almost the same look and feel as the reference
Embedded UI. 	

Overall Effort and Timing
The key to migrating any software to a microcontroller to deliver an embedded
system with a viable software architecture at reduced development costs and a
quicker time to market.

In the case of HomeChef, the choice of unified architecture and advantage
of Qt’s offering on multiple platforms helped developers achieve a quick
deployment on MCUs with a minimal learning curve. The lack of embedded
software resources and development time required the reuse of software
components. Here is an idea of the time and effort it took to port Qt Quick to
QUL, based on our work on the four most complex screens in HomeChef for MCUs.
We are basing our estimations on a developer of medium skill level with basic
knowledge of QML.

Figure 3 Animated elements
(temperature, fan speed and
progress bar) in the screen
are optimised by reusing the
same timer

Verolt Engineering & The Qt Company Porting a Qt Quick application to Qt for MCUs 10

Screen

Complexity: Medium
•	 This screen had to undergo a medium level of changes involving a

horizontal scrolling list and other GUI elements.
•	 Time required: One day

Screen	

Complexity: High
•	 Nested collapsible list: This component had to undergo GUI changes to

make it work on MCU.
•	 To accommodate the small screen size, the UI had been changed with

enlarged fonts and mouse areas.
•	 Time required: Three days

	

Verolt Engineering & The Qt Company Porting a Qt Quick application to Qt for MCUs 11

Screen
		

Complexity: Medium
•	 Animated circular progress bar
•	 Replacement of Qt Design Studio elements to timer-based animation
•	 Overlay of images has been used to display data and clip unwanted image

data
•	 Time required: One day

Screen	

	

Complexity: Medium
•	 Animated circular progress bar
•	 Rotation Animation
•	 Same timer used for multiple microanimations like fan or temperature.
•	 Time required: Two days

	

Need help? No Problem!
We can migrate to any thing. Please contact Qt to optimize
your development projects.

Contact Qt at www.qt.io/contact-us/

